On the Area of Square Lattice Polygons

I. G. Enting ${ }^{1}$ and A. J. Guttmann ${ }^{2}$

Received July 14, 1989

Abstract

We consider the generating function of self-avoiding square lattice polygons grouped by both area and perimeter. The generating function for polygons of area n is found to diverge at $x_{c}=0.251834$, with an exponent of zero. The mean perimeter of polygons with area n is found to be proportional to n, while the mean area of polygons with perimeter n is found to be proportional to $n^{1.5}$.

KEY WORDS: Square lattice polygons.

1. INTRODUCTION

The method of exact series expansions was refined and developed into a valuable tool by Domb and co-workers at Kings' College, London. For many problems, it remains the most powerful method of approximation. With the development of very fast computers, and the parallel development of algorithm refinement, it is now possible to make exact conjectures of critical exponents in favorable circumstances. The following study utilizes developments in computing hardware, algorithms, and analysis methods that have taken place over the last decade, and allows us to confidently conjecture certain critical exponents.

For many years the problem of self-avoiding polygons has been studied by calculating the terms in the generating function for polygons with given perimeter. This generating function, when twice differentiated, gives the "specific heat" of the N-vector model in the $N \rightarrow 0$ limit. Recently we were able to obtain ${ }^{(1)}$ polygons to 56 steps on the square lattice and ${ }^{(2)}$ 82 steps on the honeycomb lattice. An alternative problem, the behavior of the generating function of polygons by enclosed area, has received far less

[^0]attention. In 1961 Hiley and Sykes ${ }^{(3)}$ considered the distribution of polygons on the square and triangular lattices by both area and perimeter, obtaining data for all polygons up to perimeter 18 (square) and 16 (triangular) steps. The triangular data were sufficiently good to permit them to estimate the increase of mean area $\left\langle a_{n}\right\rangle$ of polygons with perimeter n, and they found $\left\langle a_{n}\right\rangle \sim n^{1.5 \pm 0.04}$. Many years later, Leibler et al. ${ }^{(4)}$ gave heuristic arguments as to why the exponent should be $2 v$, where $v=3 / 4$ for the two-dimensional self-avoiding walk (SAW) problem. ${ }^{(5)}$

To define the problems more precisely, let p_{n} denote the number of polygons with perimeter n and generating function $P(x)$. Let a_{n} denote the number of polygons with area n and generating function $A(y)$. Let $\left\langle p_{n}\right\rangle$ denote the mean perimeter of all polygons with area n and generating function $A(y)$, and let $\left\langle a_{n}\right\rangle$ denote the mean area of all polygons with perimeter n and generating function $\Omega(x)$.

These quantities can all be derived from the generating function $\mathbf{P}(x, y)$,

$$
\begin{equation*}
\mathbf{P}(x, y)=\sum_{n} \sum_{m} p_{n, m} x^{m} y^{n} \tag{1}
\end{equation*}
$$

where $p_{n, m}$ is the number of polygons with area n and perimeter m. Thus,

$$
\begin{aligned}
P(x) & =\mathbf{P}(x, 1), & A(y)=\mathbf{P}(1, y) \\
\left\langle p_{n}\right\rangle & =\sum_{m} m \cdot p_{n, m} / \sum_{m} p_{n, m}, & \left\langle a_{m}\right\rangle=\sum_{n} n \cdot p_{n, m} / \sum_{n} p_{n, m}
\end{aligned}
$$

where the denominators of $\left\langle p_{n}\right\rangle$ and $\left\langle a_{m}\right\rangle$ can be written a_{n} and p_{m}, respectively. Further, for any finite n or m, the other sum in (1) is also finite. That is to say, $\mathbf{P}(x, y)$ can be expressed as a single sum in n or m with $p_{n, m}$ replaced by a polynomial in x or y, respectively. We wish to determine the singular behavior of the three generating functions $A(y), A(y)$, and $\Omega(x)$. The generating function $P(x)$ has been discussed previously. ${ }^{(1,2)}$

In the fields of combinatorial mathematics and computer science, the same problems involving a subset of self-avoiding polygons, convex polygons, have been discussed for many years. Consider polygons on the square lattice. Then row-convex polygons are defined as those polygons (we dispense with the universal adjective self-avoiding) in which any vertical line on the dual lattice intersects either zero or two horizontal bonds of the convex polygon. Similarly, for column-convex polygons, any horizontal line on the dual lattice intersects either zero or two vertical bonds of the convex polygons. Polygons which are both row-convex and column-convex we denote simply as convex.

For row- (or equivalently column-) convex polygons, Temperley ${ }^{(6)}$ and subsequently Polya ${ }^{(7)}$ showed that the generating function of such polygons grouped by area takes a particularly simple form,

$$
A(y)=y(1-y)^{3} /\left(1-5 y+7 y^{2}-4 y^{3}\right)
$$

which has a simple pole at $0.311957055 . .$. , whereas ${ }^{(7)}$ the generating function for row-convex polygons, with respect to a diagonal line, grouped by perimeter has coefficients equal to $\binom{2 n}{n} /(4 n-2)$, so that the generating function has a cusplike square-root singularity with a "critical point" at $x_{c}=1 / 4$.

For convex polygons, the generating function of polygons grouped by area has been studied by Klarner and Rivest ${ }^{(8)}$ and subsequently by Bender. ${ }^{(9)}$ They found that the generating function $A(y)$ is singular at $y_{c}=0.433061923$, again with a simple pole, though a closed-form expression has never been found. For convex polygons grouped by perimeter, the generating function was first found by Delest and Viennot, ${ }^{(10)}$ who showed that

$$
P(x)=x^{2}\left[\left(1-6 x+11 x^{2}-4 x^{3}\right) /(1-4 x)^{2}-4 x^{2} /(1-4 x)^{3 / 2}\right]
$$

which has a double pole at $x_{c}=1 / 4$. This result was subsequently independently discovered by a number of authors. ${ }^{(11 \cdot 13)}$

Thus we see from the simpler problems of convex and row-convex polygons that both the "critical points" and exponents are quite different for the two generating functions $A(y)$ and $P(x)$.

In the remainder of this paper we study these and related quantities for unrestricted self-avoiding polygons on the square lattice. Known results to date on some aspects of this problem are

$$
P(x) \sim A(1-\mu x)^{1.5}+B
$$

where $\mu=2+\sqrt{2}$ (honeycomb), 6.958880 (square), ${ }^{3} 4.15075$ (triangular), and

$$
\Omega(x) \sim C(1-x)^{-2.5}+D
$$

The results for the exponent of $P(x)$ follow from Nienhuis' exact results ${ }^{(5)}$ and scaling laws, and have been verified by series work of Guttmann and Enting ${ }^{(1.2)}$ based on series of length 82, 56, and 25 terms for the honeycomb, square, and triangular ${ }^{4}$ lattices, respectively. The series work

[^1]cited also gave the quoted connective constants. The exponent for the generating function $\Omega(x)$ of mean areas was first given in ref. 3. Based on our enumerations, which are complete for polygons with perimeter up to 42 steps and area 20 (assuming a square lattice of unit lattice spacing), we conjecture that
$$
A(x) \sim G+H \cdot \log (1-\kappa x) \quad \text { (square) }
$$
where $\kappa=3.97087$... and the singularity may be some more complicated function of a logarithm. If we assume that the exponent is exactly $0_{\text {log }}$, then we conjecture the following exact exponents:
$$
a_{n} \sim \kappa^{n} \cdot n^{-1}, \quad p_{n} \sim \mu^{n} \cdot n^{-5 / 2}
$$

Analysis of the mean area series for square lattice polygons suggested $\left\langle a_{n}\right\rangle \sim n^{1.5}$, in agreement with the earlier estimate ${ }^{(5)}$ of the exponent 1.50 ± 0.04. Analysis of the mean perimeter data gave $\left\langle p_{n}\right\rangle \sim n$, where the exponent is found to be 1.000 ± 0.003. This supports a conjecture of Whittington (unpublished) that the exponent is exactly 1.

In the next section we discuss the derivation of the series, and in Section 3 we present the analysis of the data.

2. ENUMERATION OF POLYGONS BY AREA AND PERIMETER

The series that we have calculated is the set of $p_{n m}$, the number of selfavoiding polygons of perimeter m and area n on the square lattice [1]. Our computational technique is a direct generalisation of the approach of Enting. ${ }^{(14)}$ We obtain a truncated approximation to $\mathbf{P}(x, y)$ as

$$
\begin{equation*}
\mathbf{P}(x, y) \cong \sum_{m, n} a_{m n} G_{m n}(x, y) \tag{2}
\end{equation*}
$$

where the sum is over the range defined by $1 \leqslant m \leqslant n$ and $m+n \leqslant 2 W+1$. Here $G_{m n}(x, y)$ is the generating function for all self-avoiding polygons that fit into a rectangle m steps wide and n steps long, but not into any rectangle less than n steps long. W is the maximum. width, $W=\max (m)$, for which the $G_{m n}$ are required. If the $a_{m n}$ are obtained using the rules given in ref. 14, then the approximation (2) will give the coefficients $p_{n m}$ correctly for $m \leqslant 4 W+2$. We have used $W=10$ and so have enumerated polygons of up to 42 steps, with the additional y dependence giving the distribution according to area.

The combinatorics of combining the partial generating functions $G_{m n}$ is exactly the same as specified in ref. 14. The calculation of the various
$G_{m n}(x, y)$ is a relatively simple generalization of our earlier procedure, which, in the present notation, determined $G_{m n}(x, 1)$.

The enumeration proceeds by building up a finite rectangular lattice, one site at a time, starting from the top left, building a column of sites downward and then building up successive columns one site at a time from the top down. As each site is added we have to consider all possible ways in which bonds leaving the site downward or to the right can be added. When considering the number of ways a bond can occur in a partly constructed polygon, we have to consider not only the presence or absence of a bond, but also the connectivity of bonds that are present. This is done ${ }^{(14)}$ by labeling bonds with a 1 or 2 , depending on whether the bond is at the top or bottom of a loop running through the partly constructed lattice. The number of ways of adding the two new bonds leaving a new site has to be considered in conjunction with the number of ways in which all other sites in the partly constructed lattice can be linked to sites that are yet to be added. The number of combinations grows rapidly. It is bounded above by 3^{W+2}; a generating function for the precise numbers of combinations is given in ref. 1, Eq. (10). These numbers define the size of vectors required in the construction of the $G_{m n}$. For $W=10$ we require vectors with 15,511 components. The vector components combine partial generating functions (series in x and y) describing the number of ways of having sets of selfavoiding loops reaching the growing edge of the partly constructed rectangle in a specified manner. Each time a new site is added and the state of two new bonds is assigned, a factor of x^{0}, x^{1}, or x^{2} is included in the partial generating function, depending on whether 0,1 , or 2 of the bonds were occupied (i.e., in states 1 or 2). A factor of y^{0} or y^{1} is included, depending on whether or not the square to the top left of the new site is outside or inside the polygon. For each possible combination of intersections of loops with the growing edge of the lattice we can determine whether a square is inside or outside any polygon that can be formed from the partly constructed loops by noting whether the number of bonds between the site and the top of the lattice is odd or even.

In summary, the new factors required when generalizing the method ${ }^{(14)}$ to obtain the $p_{m n}$ are the use of two-variable series throughout, the inclusion of the factors y^{0} or y^{1} when building up a new vector of loop generating functions, and a procedure for counting number of bonds to determine whether the factor should be y^{0} or y^{1}. The requirement for series in two variables restricted us to $W \leqslant 10$, so that our series for $p_{n m}$ can only be complete for $m \leqslant 42$. The coefficients $p_{n m}$ are zero if $2 n+2<m$ (or $n>m^{2} / 16$). Thus, completeness for $m \leqslant 42$ implies completeness for $n \leqslant 20$. In practice we truncated the expansion at $m=48$ and $n=50$. Thus, for fixed $n \leqslant 20$, all nonzero $p_{n m}$ are obtained correctly ($n=13-49$ for $m=28$) with the limit being set by the order q at which we truncated the series.

Table I. Coefficients $p_{m m}$ of the Generating Function $P(x, y)^{d}$

${ }^{a}$ The coefficient $p_{n, m}$ is the number of polygons with perimeter m and area n. The last three columns give, in order, the coefficients of the generating function of the area grouping $A(y)$, the mean perimeters for fixed area, and the mean area for fixed perimeter.

In Table I we show the coefficients $p_{n m}, n \leqslant 20, m \leqslant 42$, as well as the coefficients of the generating function $A(y)$ and the mean perimeters of polygons of area $n,\left\langle p_{n}\right\rangle$, and the mean areas of polygon of perimeter n, $\left\langle a_{n}\right\rangle$.

3. SERIES ANALYSIS

The series expansion of $A(y)$ is given up to the coefficient of y^{20} in Table I. We have analyzed the series by both ratio methods and the

Table II. Neville-Aitken Extrapolation of the Ratios and Unbiased Exponent Estimates of the Generating Function $A(v)$,
the Number of Polygons Grouped by Area ${ }^{a}$

n	$e(n, 1)$	$e(n, 2)$	$e(n, 3)$	$e(n, 4)$	$e(n, 5)$	
		Extrapolate ratios				
7	3.55026	3.85185	3.83862	3.87408	4.10248	
8	3.59091	3.87542	3.94613	4.12530	4.37652	
9	3.62420	3.89049	3.94323	3.93744	3.70262	
10	3.65188	3.90099	3.94298	3.94240	3.94983	
11	3.67542	3.91090	3.95553	3.98898	4.07050	
12	3.69575	3.91928	3.96118	3.97812	3.95641	
13	3.71346	3.92606	3.96332	3.97046	3.95323	
14	3.72904	3.93163	3.96504	3.97134	3.97353	
15	3.74286	3.93626	3.96639	3.97181	3.97311	
16	3.75519	3.94014	3.96725	3.97095	3.96838	
17	3.76626	3.94340	3.96787	3.97079	3.97027	
18	3.77626	3.94617	3.96837	3.97082	3.97092	
19	3.78532	3.94855	3.96875	3.97081	3.97078	
		Extrapolate unbiased exponent estimates				
7	0.45192	0.49679	0.30467	-1.59668	-5.34879	
8	0.41268	0.13802	-0.93832	-3.00998	-4.42329	
9	0.38397	0.15427	0.21118	2.51018	9.41039	
10	0.36141	0.15834	0.17460	0.08926	-3.54212	
11	0.33767	0.10032	-0.16080	-1.05519	-3.05799	
12	0.31557	0.07248	-0.06671	0.21554	2.75700	
13	0.29605	0.06173	0.00264	0.23384	0.27501	
14	0.27863	0.05223	-0.00480	-0.03210	-0.69694	
15	0.26299	0.04407	-0.00897	-0.02565	-0.00791	
16	0.24897	0.03866	0.00079	0.04307	0.24922	
17	0.23635	0.03445	0.00285	0.01247	-0.08698	
18	0.22494	0.03091	0.00262	0.00144	-0.03716	
19	0.21457	0.02795	0.00279	0.00372	0.01227	

[^2]method of differential approximants. ${ }^{(15)}$ The series was found to be very well behaved, with the various sequences studied by the ratio method being smoothly extrapolable by Neville-Aitken extrapolation, after some initial variations in the ratios of the early terms. Beyond 12 or 13 terms, stability was quite apparent. This, however, demonstrates the importance of obtaining series of sufficient length for the asymptotic behavior to be manifest. For the two-dimensional polygon problem in particular, it appears that the finite-lattice method has enabled us to obtain series of sufficient length that a large number of previously unanswered questions can now be answered.

In Table II we give the ratios and unbiased exponent estimates extrapolated by Neville-Aitken extrapolation. On this basis we estimate $1 / y_{c}=3.9708 \pm 0.0006$, and the exponent as 0.003 ± 0.006, which suggests an exact value of zero. The alternative method of analysis was based on inhomogeneous differential approximants, combined together using a previously developed statistical procedure ${ }^{(15,16)}$ to give an overall estimate of the critical parameters. A summary of these approximants is shown in Table III, and they combine to yield $y_{c}=0.25183 \pm 0.00003$ (or $1 / y_{c}=3.97093 \pm 0.0005$) with exponent -0.001 ± 0.010. We combine this analysis with the ratio analysis results to give our best estimates as $y_{c}=0.251834$ and an exponent of zero, presumably corresponding to a logarithmic singularity.

Table III. Results of a Differential Approximant Analysis of the Same Series $\boldsymbol{A}(y)$ Analyzed in Table II ${ }^{a}$

n	Critical point		Critical exponent		L
	Estimate	Error	Estimate	Error	
11	0.2509229	0.0000398	0.1586098	0.0032157	$3 \times$
12	0.2511809	0.0003948	0.1080113	0.0679823	4
13	0.2512870	0.0010713	0.0939811	0.1723455	9
14	0.2518963	0.0006981	-0.0108409	0.1145714	11
15	0.2518180	0.0002419	-0.0001454	0.0463212	11
16	0.2518924	0.0002264	-0.0137478	0.0531241	11
17	0.2517652	0.0002124	0.0171383	0.0551452	12
18	0.2518158	0.0001671	0.0038068	0.0478107	12
19	0.2518320	0.0000379	-0.0008885	0.0108081	11

[^3]We have also analyzed the generating function $A(y)$ for the mean perimeter series, whose coefficient of y^{n} is the mean perimeter of all polygons with area n. We performed the same analysis as above, and found that $\left\langle p_{n}\right\rangle \sim n^{g}$, with $g=1.000 \pm 0.003$. This implies that polygons are essentially linear objects, or highly ramified, as their mean perimeter is proportional to their area. Another quantity of interest is the mean area of all polygons of perimeter n, denoted $\left\langle a_{n}\right\rangle$, whose generating function was defined above as $\Omega(x)$. This series is also shown in Table I. By the same methods of analysis, we find $\left\langle a_{n}\right\rangle \sim n^{p}$, with $p=1.499 \pm 0.003$, in agreement with earlier work. ${ }^{(3)}$

4. DISCUSSION

We have investigated the behavior of polygons grouped by area, rather than perimeter. For some purposes this is a more natural definition, for example, if one considers these objects as types of lattice animals or as a realization of a particular cluster counting problem. For convex polygons, row-convex polygons, and polygons we find that the exponential growth factor for the perimeter generating function is some $25-75 \%$ greater numerically than the corresponding quantity for the area generating function. It is by no means obvious that these two "critical points" should be different. The linearity of polygons, revealed by the result that $\left\langle p_{n}\right\rangle \sim n$, is also somewhat surprising. Another aspect that calls for further investigation is the nature of the exponent for the area generating function $A(y)$. While it is presumably logarithmic, it would be interesting to determine whether this is a simple logarithm or a more complicated structure, such as a logarithm raised to a power or a logarithm of a logarithm. Such subtleties will probably require greater analytical knowledge, but the enumerations obtained here are likely to be of value in the study of these and related questions.

NOTE ADDED IN PROOF

Row convex square lattice polygons grouped by perimeter were first discussed and partially solved by Temperley. ${ }^{(6)}$ Recently Brak et al. ${ }^{(17)}$ have obtained the generating function explicitly. Near the critical point it behaves like $A(1-\lambda x)^{1 / 2}$, where $\lambda=3+2 \sqrt{2}$. Thus λ lies between the values obtained for convex and "ordinary" square lattice polygons, as does the exponent.

ACKNOWLEDGMENTS

We would like to thank Michael E. Fisher for enlightening correspondence. Financial support from the Australian Research Council is acknowledged.

REFERENCES

1. A. J. Guttmann and I. G. Enting, J. Phys. A: Math. Gen. 21:L165-172 (1988).
2. I. G. Enting and A. J. Guttmann, J. Phys. A: Math. Gen. 22:1371-1384 (1989).
3. B. J. Hiley and M. F. Sykes, J. Chem. Phys. 34:1531 (1961).
4. S. Leibler, R. R. P. Singh, and M. E. Fisher, Phys. Rev. Lett. 59:1989 (1987).
5. B. Nienhuis, Phys. Rev. Lett. 49:1062 (1982); J. Stat. Phys. 34:731 (1984).
6. H. N. V. Temperley, Phys. Rev. 103:1-16 (1956).
7. G. Polya, J. Comb. Theory 6:102 (1969).
8. D. A. Klarner and R. L. Rivest, Discrete Math. 8:31-40 (1974).
9. E. A. Bender, Discrete Math. 8:219-226 (1974).
10. M. P. Delest and G. Viennot, Theor. Comp. Sci. 34:169-206 (1984).
11. K. Y. Lin and S. J. Chang, J. Phys. A: Math. Gen. 21:2635-2642 (1988).
12. A. J. Guttmann and I. G. Enting, J. Phys. A: Math. Gen. 21:L467-474 (1988); I. G. Enting and A. J. Guttmann, J. Phys. A: Math. Gen. 22, to appear.
13. D. Kim, Disc. Math. 70:47 (1988).
14. I. G. Enting, J. Phys. A 13:3713 (1980).
15. A. J. Guttmann, in Phase Transitions and Critical Phenomena, Vol. 13, C. Domb and J. Lebowitz, eds. (Academic Press, London, 1989).
16. A. J. Guttmann, J. Phys. A: Math. Gen. 20:1839 (1987).
17. R. J. Brak, I. G. Enting, A. J. Guttmann and S. G. Whittington (in preparation).

[^0]: ${ }^{1}$ CSIRO Division of Atmospheric Research, Private Bag 1, Mordialloc, Victoria 3195 Australia.
 ${ }^{2}$ Department of Mathematics, University of Melbourne, Parkville, Victoria 3052 Australia.

[^1]: ${ }^{3}$ For the square and honeycomb lattices only polygons with an even number of bonds are embeddable. Thus, the connective constant is the square of the SAW connective constant.
 ${ }^{4}$ The extension of the triangular lattice polygon series by the present authors has not yet been published.

[^2]: "The left-hand column indexes the nonzero coefficients. Thus, the area is $n+1$ for entries in row n.

[^3]: ${ }^{a}$ As in Table \mathbf{I}, the row n indexes the coefficients corresponding to area $n+1$. Defective range factor for positive real axis: 1.200. Absolute defective range value for the complex plane: 0.005 .

