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On the Area of Square Lattice Polygons 
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We consider the generating function of self-avoiding square lattice polygons 
grouped by both area and perimeter. The generating function for polygons of 
area n is found to diverge at x~. = 0.251834, with an exponent of zero. The mean 
perimeter of polygons with area n is found to be proportional to n, while the 
mean area of polygons with perimeter n is found to be proportional to n 15. 
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1. I N T R O D U C T I O N  

The method of exact series expansions was refined and developed into a 
valuable tool by Domb and co-workers at Kings' College, London. For 
many problems, it remains the most powerful method of approximation. 
With the development of very fast computers, and the parallel development 
of algorithm refinement, it is now possible to make exact conjectures of 
critical exponents in favorable circumstances. The following study utilizes 
developments in computing hardware, algorithms, and analysis methods 
that have taken place over the last decade, and allows us to confidently 
conjecture certain critical exponents. 

For many years the problem of self-avoiding polygons has been 
studied by calculating the terms in the generating function for polygons 
with given perimeter. This generating function, when twice differentiated, 
gives the "specific heat" of the N-vector model in the N - -  0 limit. Recently 
we were able to obtain (1~ polygons to 56 steps on the square lattice and (2/ 
82 steps on the honeycomb lattice. An alternative problem, the behavior of 
the generating function of polygons by enclosed area, has received far less 
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attention. In 1961 Hiley and Sykes (3) considered the distribution of 
polygons on the square and triangular lattices by both area and perimeter, 
obtaining data for all polygons up to perimeter 18 (square) and 16 (tri- 
angular) steps. The triangular data were sufficiently good to permit them 
to estimate the increase of mean area (a~)  of polygons with perimeter n, 
and they found (a~)  ~ n15 +0.o4 Many years later, Leibler et al.(4) gave 
heuristic arguments as to why the exponent should be 2v, where v = 3/4 for 
the two-dimensional self-avoiding walk (SAW) problem. (5) 

To define the problems more precisely, let p,  denote the number of 
polygons with perimeter n and generating function P(x). Let an denote the 
number of polygons with area n and generating function A(y). Let {p,,) 
denote the mean perimeter of all polygons with area n and generating 
function A(y),  and let ( an )  denote the mean area of all polygons with 
perimeter n and generating function f2(x). 

These quantities can all be derived from the generating function 
P(x, y), 

a(x, y ) = ~  ~ pn, mX"y n (1) 
n m 

where p.,.~ is the number of polygons with area n and perimeter m. Thus, 

P ( x ) = P ( x ,  1), A(y) =P(1,  y) 

(Pn)--Z m'pn,./Zp .... (am) =~ n'pn, m/~Pn, m 

where the denominators of <P , )  and <am) c a n  be written a,  and p~, 
respectively. Further, for any finite n or m, the other sum in (1) is also 
finite. That is to say, P(x, y) can be expressed as a single sum in n or m 
with p .... replaced by a polynomial in x or y, respectively. We wish 
to determine the singular behavior of the three generating functions 
A(y), A(y),  and f2(x). The generating function P(x) has been discussed 
previously. (1,2) 

In the fields of combinatorial mathematics and computer science, 
the same problems involving a subset of self-avoiding polygons, convex 
polygons, have been discussed for many years. Consider polygons on the 
square lattice. Then row-convex polygons are defined as those polygons (we 
dispense with the universal adjective self-avoiding) in which any vertical 
line on the dual lattice intersects either zero or two horizontal bonds of the 
convex polygon. Similarly, for column-convex polygons, any horizontal line 
on the dual lattice intersects either zero or two vertical bonds of the convex 
polygons. Polygons which are both row-convex and column-convex we 
denote simply as convex. 
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For row- (or equivalently column-) convex polygons, Temperley (6) 
and subsequently Polya (7) showed that the generating function of such 
polygons grouped by area takes a particularly simple form, 

A(y) = y(1 - y)3/(1 - 5y + 7y 2 - 4y 3) 

which has a simple pole at 0.311957055 .... whereas (7) the generating func- 
tion for row-convex polygons, with respect to a diagonal line, grouped by 

2n perimeter has coefficients equal to ( n ) / ( 4 n - 2 ) ,  so that the generating 
function has a cusplike square-root singularity with a "critical point" at 
x,=l/4. 

For  convex polygons, the generating function of polygons grouped by 
area has been studied by Klarner and Rivest (81 and subsequently by 
Bender. (91 They found that the generating function A(y) is singular at 
yc=0.433061923, again with a simple pole, though a closed-form expres- 
sion has never been found. For convex polygons grouped by perimeter, the 
generating function was first found by Delest and Viennot, (1~ who showed 
that 

P(x ) = x 2 l- ( 1 - 6x + 11 x 2 _ 4x 3 )/( 1 - 4x ) 2 _ 4x 2/( 1 - 4x) 3/2 ] 

which has a double pole at x,.--1/4. This result was subsequently inde- 
pendently discovered by a number  of authors. (It 13~ 

Thus we see from the simpler problems of convex and row-convex 
polygons that both the "critical points" and exponents are quite different 
for the two generating functions A(y) and P(x). 

In the remainder of this paper we study these and related quantities 
for unrestricted self-avoiding polygons on the square lattice. Known results 
to date on some aspects of this problem are 

P(x) ~ A(1 - #x) 15 + B 

where /~ = 2  + ~ (honeycomb), 6.958880 (square), 3 4.15075 (triangular), 
and 

~(x)~ C(1-- x)-2.5 + D 

The results for the exponent of P(x) follow from Nienhuis' exact results (5) 
and scaling laws, and have been verified by series work of Gut tmann  and 
Enting (1'2) based on series of length 82, 56, and 25 terms for the 
honeycomb, square, and triangular 4 lattices, respectively. The series work 

3 For the square and honeycomb lattices only polygons with an even number of bonds are 
embeddable. Thus, the connective constant is the square of the SAW connective constant. 

4 The extension of the triangular lattice polygon series by the present authors has not yet been 
published. 
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cited also gave the quoted connective constants. The exponent for the 
generating function (2(x) of mean areas was first given in ref. 3. Based on 
our enumerations, which are complete for polygons with perimeter up to 
42 steps and area 20 (assuming a square lattice of unit lattice spacing), we 
conjecture that 

A (x) ~ G + H- log(1 - ~cx) (square) 

where ~c= 3.97087... and the singularity may be some more complicated 
function of a logarithm. If we assume that the exponent is exactly 0~og, then 
we conjecture the following exact exponents: 

a n ~ g '2 . n 1, Pn ~ ] In " El 5/2 

Analysis of the mean area series for square lattice polygons suggested 
<a,,>,,~n 15, in agreement with the earlier estimate (5/ of the exponent 
1.50+0.04. Analysis of the mean perimeter data gave < p n > ~ n ,  where 
the exponent is found to be 1.000 + 0.003. This supports a conjecture of 
Whittington (unpublished) that the exponent is exactly 1. 

In the next section we discuss the derivation of the series, and in 
Section 3 we present the analysis of the data. 

2. E N U M E R A T I O N  OF P O L Y G O N S  BY A R E A  A N D  P E R I M E T E R  

The series that we have calculated is the set of Prim, the number of self- 
avoiding polygons of perimeter m and area n on the square lattice [ 1 ]. Our 
computational technique is a direct generalisation of the approach of 
Enting. (14) We obtain a truncated approximation to P(x, y) as 

P(x, y ) ~ -  E amnGmn(X, Y) (2) 
m , n  

where the sum is over the range defined by 1 <~m<~n and m + n < ~ 2 W +  1. 
Here Gmn(X , y )  is the generating function for all self-avoiding polygons that 
fit into a rectangle m steps wide and n steps long, but not into any 
rectangle less than n steps long. W is the maximum width, W =  max(m), for 
which the Gmn a r e  required. If the amn are obtained using the rules given 
in ref. 14, then the approximation (2) will give the coefficients Pnm correctly 
for m~<4W+2.  We have used W =  10 and so have enumerated polygons 
of up to 42 steps, with the additional y dependence giving the distribution 
according to area. 

The combinatorics of combining the partial generating functions G,,, 
is exactly the same as specified in ref. 14. The calculation of the various 
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G,,,z(x, y) is a relatively simple generalization of our earlier procedure, 
which, in the present notation, determined G,,,,(x, 1). 

The enumeration proceeds by building up a finite rectangular lattice, 
one site at a time, starting from the top left, building a column of sites 
downward and then building up successive columns one site at a time from 
the top down. As each site is added we have to consider all possible ways 
in which bonds leaving the site downward or to the right can be added. 
When considering the number of ways a bond can occur in a partly con- 
structed polygon, we have to consider not only the presence or absence of 
a bond, but also the connectivity of bonds that are present. This is done (14) 
by labeling bonds with a 1 or 2, depending on whether the bond is at the 
top or bottom of a loop running through the partly constructed lattice. The 
number of ways of adding the two new bonds leaving a new site has to be 
considered in conjunction with the number of ways in which all other sites 
in the partly constructed lattice can be linked to sites that are yet to be 
added. The number of combinations grows rapidly. It is bounded above by 
3w+2; a generating function for the precise numbers of combinations is 
given in ref. 1, Eq. (10). These numbers define the size of vectors required 
in the construction of the Gin,,. For W =  10 we require vectors with 15,5ll 
components. The vector components combine partial generating functions 
(series in x and y) describing the number of ways of having sets of self- 
avoiding loops reaching the growing edge of the partly constructed 
rectangle in a specified manner. Each time a new site is added and the state 
of two new bonds is assigned, a factor of x ~ x ~, or x 2 is included in the 
partial generating function, depending on whether 0, 1, or 2 of the bonds 
were occupied (i.e., in states 1 or 2). A factor of y0 or yl is included, 
depending on whether or not the square to the top left of the new site is 
outside or inside the polygon. For each possible combination of inter- 
sections of loops with the growing edge of the lattice we can determine 
whether a square is inside or outside any polygon that can be formed from 
the partly constructed loops by noting whether the number of bonds 
between the site and the top of the lattice is odd or even. 

In summary, the new factors required when generalizing the method (14~ 
to obtain the Pmn are the use of two-variable series throughout, the 
inclusion of the factors yO or yl when building up a new vector of loop 
generating functions, and a procedure for counting number of bonds to 
determine whether the factor should be yO or y~. The requirement for series 
in two variables restricted us to W~< 10, so that our series for p .... can only 
be complete for m ~<42. The coefficients p,,,  are zero if 2n + 2 < m (or 
n > m2/16). Thus, completeness for rn ~< 42 implies completeness for n ~< 20. 
In practice we truncated the expansion at m = 48 and n = 50. Thus, for 
fixed n ~< 20, all nonzero Pnm are obtained correctly (n = 13-49 for in = 28) 
with the limit being set by the order q at which we truncated the series. 
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Table I. Coefficients Prim of the Generating Function P(x, y)~ 

m 1 2 3 4 5 6 7 8 9 10 11 12 

4 1 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 

6 1 
18 8 2 

55 40 
174 

22 6 1 
168 134 72 30 8 2 
566 676 656 482 310 151 

1868 2672 2992 2592 2086 
6237 10376 13160 12862 

21050 39824 56162 
71666 151878 

245696 

m 13 14 15 16 17 18 

16 68 22 6 1 
18 1392 864 456 218 88 30 
20 11717 9332 7032 4748 3010 1728 
22 61032 60864 54032 45936 35952 26858 
24 234520 279492 301802 290754 268056 231156 
26 576656 965136 1246080 1443896 1493528 1467628 
28 847317 2181496 3928732 5448780 6720262 7404092 
30 2937116 8229160 15850366 23468968 30631444 
32 10226574 30974700 63482128 99831330 
34 35746292 116385088 252724778 
36 125380257 436678520 
38 441125966 

m 19 20 A(y) Series ( p , )  (an)  

4 1 4 1 
6 2 6 2 
8 6 8 3.1428571429 

10 19 9.89473684 4.4285714286 
12 63 11.7460317 5.8548387097 
14 216 13.5925926 7.4013605442 
16 756 15.4391534 9.0585432267 
18 8 2 2684 17.2831595 10.820277705 
20 914 426 9638 19.1276198 12.681445995 
22 18744 12456 34930 20.9736044 14.63708594 
24 191910 151097 127560 22.820947 16.682878073 
26 1356960 1212736 468837 24.6694779 18.815033267 
28 7696852 7531072 1732702 26.5190437 21.030199678 
30 35700744 39048104 6434322 28.3694636 23.325383019 
32 137311068 168434122 23993874 30.2205738 25.697887518 
34 420247680 607002280 89805691 32.072244 28.145271227 
36 1001011854 1753545206 337237337 33.9243709 30.665308851 
38 1636472360 3947661088 1270123530 35.7768731 33.255961787 
40 1556301578 6126647748 4796310672 37.6296864 35.915353517 
42 18155586993 18155586993 39.4827603 38.641749316 

a The coefficient p ..... is the number of polygons with perimeter m and area n. The last three 
columns give, in order, the coefficients of the generating function of the area grouping A(y), 
the mean perimeters for fixed area, and the mean area for fixed perimeter. 
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In Table I we show the coefficients Pnm, rl ~ 20, m ~< 42, as well as the 
coefficients of the generating function A(y) and the mean perimeters of 
polygons of area n, (Pn) ,  and the mean areas of polygon of perimeter n, 
(a~). 

3. SERIES ANALYSIS 

The series expansion of A(y) is given up to the coefficient of y20 in 
Table I. We have analyzed the series by both ratio methods and the 

Table II. Neville-Aitken Extrapolation of the Ratios and Unbiased Exponent 
Estimates of the Generating Function A(y) ,  
the Number of Polygons Grouped by Area a 

n e(n, 1) e(n, 2) e(n, 3) e(n, 4) e(n, 5) 

Extrapolate ratios 

7 3.55026 3.85185 3.83862 3.87408 4.10248 
8 3.59091 3.87542 3.94613 4.12530 4.37652 
9 3.62420 3.89049 3.94323 3.93744 3.70262 

10 3.65188 3.90099 3.94298 3.94240 3.94983 
l l  3.67542 3.91090 3.95553 3.98898 4.07050 
12 3.69575 3.91928 3.96118 3.97812 3.95641 
13 3.71346 3.92606 3.96332 3.97046 3.95323 
14 3.72904 3.93163 3.96504 3.97134 3.97353 
15 3.74286 3.93626 3.96639 3.97181 3.97311 
16 3.75519 3.94014 3.96725 3.97095 3.96838 
17 3.76626 3.94340 3.96787 3.97079 3.97027 
18 3.77626 3.94617 3.96837 3.97082 3.97092 
19 3.78532 3.94855 3.96875 3.97081 3.97078 

Extrapolate unbiased exponent estimates 

7 0.45192 0.49679 0.30467 -1.59668 -5.34879 
8 0.41268 0.13802 -0.93832 -3.00998 -4.42329 
9 0.38397 0.15427 0.21118 2.51018 9.41039 

10 0.36141 0.15834 0.17460 0.08926 -3.54212 
11 0.33767 0.10032 -0.16080 -1~05519 -3.05799 
12 0.31557 0.07248 -0.06671 0.21554 2.75700 
13 0.29605 0,06173 0.00264 0.23384 0.27501 
14 0.27863 0.05223 -0.00480 -0.03210 -0.69694 
15 0.26299 0.04407 -0.00897 -0.02565 -0.00791 
16 0.24897 0.03866 0.00079 0.04307 0.24922 
17 0.23635 0.03445 0.00285 0.01247 -0.08698 
18 0.22494 0.03091 0.00262 0.00144 -0.03716 
19 0.21457 0.02795 0.00279 0.00372 0.01227 

"The left-hand column indexes the nonzero coefficients. Thus, the area is n + 1 for entries in 
r o w  n. 
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method of differential approximants./15) The series was found to be very 
well behaved, with the various sequences studied by the ratio method 
being smoothly extrapolable by Neville-Aitken extrapolation, after some 
initial variations in the ratios of the early terms. Beyond 12 or 13 terms, 
stability was quite apparent. This, however, demonstrates the importance of 
obtaining series of sufficient length for the asymptotic behavior to be 
manifest. For the two-dimensional polygon problem in particular, it appears 
that the finite-lattice method has enabled us to obtain series of sufficient 
length that a large number of previously unanswered questions can now be 
answered. 

In Table II we give the ratios and unbiased exponent estimates 
extrapolated by Neville-Aitken extrapolation. On this basis we estimate 
1/y c = 3.9708 _+ 0.0006, and the exponent as 0.003 _+ 0.006, which suggests 
an exact value of zero. The alternative method of analysis was based on 
inhomogeneous differential approximants, combined together using a 
previously developed statistical procedure u5'16) to give an overall estimate 
of the critical parameters. A summary of these approximants is shown 
in Table III, and they combine to yield yc=0.25183+0.00003 (or 
1lye= 3.97093_+0.0005) with exponent -0.001 _+0.010. We combine this 
analysis with the ratio analysis results to give our best estimates as 
yc=0.251834 and an exponent of zero,' presumably corresponding to a 
logarithmic singularity. 

Table III. R e s u l t s  o f  a D i f f e r e n t i a l  Approximant Analysis of the Same Series 
A(y) A n a l y z e d  in T a b l e  II a 

Critical point Critical exponent 

n Estimate Error Estimate Error L 

11 0.2509229 0.0000398 0.1586098 0.0032157 3x 
12 0.2511809 0.0003948 0.1080113 0.0679823 4 
13 0.2512870 0.0010713 0.0939811 0.1723455 9 
14 0.2518963 0.0006981 -0.0108409 0.1145714 11 
15 0.2518180 0.0002419 -0.0001454 0.0463212 11 
16 0.2518924 0.0002264 -0.0137478 0.0531241 11 
17 0.2517652 0.0002124 0.0171383 0.0551452 12 
t8 0.2518158 0.0001671 0.0038068 0.0478107 12 
19 0.2518320 0.0000379 -0.0008885 0.0108081 11 

a As in Table I, the row n indexes the coefficients corresponding to area n + l. Defective range 
factor for positive real axis: 1200. Absolute defective range value for the complex plane: 
0.005. 
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We have also analyzed the generating function A(y)  for the mean 
perimeter series, whose coefficient of y" is the mean perimeter of all 
polygons with area n. We performed the same analysis as above, and found 
that <pn>~n g, with g= l .000_0 .003 .  This implies that polygons are 
essentially linear objects, or highly ramified, as their mean perimeter is 
proportional to their area. Another quantity of interest is the mean area of 
all polygons of perimeter n, denoted <a n >, whose generating function was 
defined above as ~(x). This series is also shown in Table I. By the same 
methods of analysis, we find <an>~n p, with p =  1.499_+0.003, in agree- 
ment with earlier work. (3) 

4. D I S C U S S I O N  

We have investigated the behavior of polygons grouped by area, 
rather than perimeter. For some purposes this is a more natural definition, 
for example, if one considers these objects as types of lattice animals or 
as a realization of a particular cluster counting problem. For convex 
polygons, row-convex polygons, and polygons we find that the exponential 
growth factor for the perimeter generating function is some 25-75% 
greater numerically than the corresponding quantity for the area generating 
function. It is by no means obvious that these two "critical points" should 
be different. The linearity of polygons, revealed by the result that <p,~ > --~ n, 
is also somewhat surprising. Another aspect that calls for further investiga- 
tion is the nature of the exponent for the area generating function A(y). 
While it is presumably logarithmic, it would be interesting to determine 
whether this is a simple logarithm or a more complicated structure, such 
as a logarithm raised to a power or a logarithm of a logarithm. Such 
subtleties will probably require greater analytical knowledge, but the 
enumerations obtained here are likely to be of value in the study of these 
and related questions. 

N O T E  A D D E D  IN P R O O F  

Row convex square lattice polygons grouped by perimeter were first 
discussed and partially solved by Temperley. (6) Recently Brak et al. (17) have 
obtained the generating function explicitly. Near the critical point it 
behaves like A ( 1 - 2 x )  1/2, where 2 = 3 + 2 ~ .  Thus 2 lies between the 
values obtained for convex and "ordinary" square lattice polygons, as does 
the exponent. 

822/58/3-4-6 
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